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Abstract 

This research looks to explore the relationship in New Haven, CT between “redlining”, a 

discriminatory housing practice enacted in 1934 by the Home Owners’ Loan Corporation 

(HOLC) and current exposure to climate-related health risks, defined as extreme heat, lower 

prevalence of green space, and increased air pollution concentrations. Exposure to these risks 

will grow as climate change worsens and will not be evenly distributed across communities. 

Through a spatial analysis of Landsat satellite imagery, datasets of urban trees and air pollution, 

and demographic data, this research looks to understand the following question: To what extent 

do unfavorable HOLC designations predict higher present-day exposure to climate-related 

health risks in New Haven neighborhoods? Results of this investigation reveal that unfavorable 

HOLC designations generally correlate to higher exposure to climate-related health risks. Land 

surface temperature values are higher by an average of 1.8ºC in redlined neighborhoods than in 

surrounding non-redlined areas, and the Normalized Difference Vegetation Index (NDVI), a 

quantitative measure of green space, is lower by 0.108. Pollution levels are not clearly correlated. 

It is necessary to understand the historical forces driving modern climate risk disparities to 

bolster environmental justice, direct urban planning, and enact policies to mitigate such adverse 

effects. 
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Introduction 

Climate change continues to accelerate as the world fails to curb the use of fossil fuels.i 

The 2015 Paris Agreement established an imperative to limit global temperature increase to well 

below 2ºC above pre-industrial values, and to pursue efforts to limit the temperature increase to 

1.5ºC.ii Current greenhouse gas emissions trends are set to bypass this target significantly, which 

will change the world as we know it. Climate changes is expected to spur various adverse 

impacts, including, but not limited to increased global surface temperatures, rising mean sea 

level, shifts in hydrological cycles, biodiversity loss, greater frequency and intensity of severe 

weather events, and greater spread of infectious disease.i These risks will not be evenly 

distributed; marginalized communities will face the most adverse impacts.i  Effective future 

mitigation requires an understanding of current disparities in climate-driven health risk factors, 

as well as the social forces that have shaped them.  

 Redlining is one such force. This discriminatory mortgage lending practice shaped 

economic and social conditions for the past century in cities across the United States, including 

New Haven. This thesis examines the extent to which redlining also shaped the natural 

environment, specifically the distribution of exposure to climate-driven health risks in New 

Haven, CT. I define these risks to include extreme heat, lower prevalence of green space, and 

higher levels of air pollution. To investigate this, I analyze a variety of materials including 

Landsat 8 satellite imagery, a database of urban trees on public land, a dataset of air pollution 

concentrations, and responses to the 2019 American Community Survey. Remote sensing 

satellite data is particularly suitable for this investigation as it allows for uniform collection of 

geospatial data over a wide span of time and large areas.iii Additionally, the data is publicly 

available and easily accessible.iii I measure extreme heat via land surface temperature quantified 
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by Band 10 of Landsat 8’s thermal infrared sensor. Green space is measured via NDVI using 

Landsat 8’s Bands 4 and 5, as well as the TreeKeeper database. These two measures are 

complimentary as NDVI encompasses all forms of vegetation, while TreeKeeper only captures 

trees on public land. Finally, air pollution is measured in a dataset of fine particular matter 

(PM2.5) concentrations. Data from the American Community Survey is used to contextualize 

these environmental factors in their social contexts.  

Research Question 

This thesis looks to answer the following question: 

To what extent do unfavorable HOLC designations predict higher present-day exposure 

to climate-related health risks in New Haven neighborhoods? 

Hypothesis 

The working hypothesis for this thesis is:  

Unfavorable HOLC designations are significantly correlated with increased land surface 

temperatures, decreased access to green space, and higher air pollution concentrations.  
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Literature Review 

This literature review aggregates demonstrations of satellite-based remote sensing data to 

quantify the impacts of redlining on climate-driven health risks. Key search terms included 

“redlining,” “urban heat,” “green space,” “air pollution,” and “remote sensing.” This survey was 

primarily aggregated from the Yale Library Quicksearch repository.  

Previous research on the relationship between redlining and climate-driven health risks 

While there is a large pool of research examining the correlation between exposure to 

climate-driven health risks and socioeconomic factors, redlining has not entered the climate 

literature until quite recently. Many of the landmark studies have been published in the last 

several years. This emerging research suggests a national pattern of positive correlation between 

redlining and increased exposure to climate-driven health risks. In 2020, Jeremy Hoffman et al. 

published a survey of 108 cities across the United States examining exposure to intra-urban heat 

in correlation to redlining.iv This study found that 94% of urban areas display city-scale patterns 

of elevated land surface temperatures in formerly redlined areas compared to non-redlined 

surrounding areas by as much as 7ºC.iv The primary materials were Landsat 8 raster images and 

HOLC shape files.iv This trend was reinforced by Bev Wilson et al. 2020, who used Landsat 8 

data to observe higher land surface temperatures in neighborhoods that received worse HOLC 

ratings in Baltimore, Dallas, and Kansas City.v  

A 2021 study by Anthony Nardone et al. established a positive correlation between worse 

HOLC grades and reduced green space across 102 U.S. cities.vi The materials included satellite 

imagery from the NASA MODerate-resolution Imaging Spectroradiometer (MODIS) mission 

and calculated green space based on NDVI.vii Average NDVI decreased from 0.47, to 0.43, to 

0.39, to 0.36 across HOLC grades “A”, to “B”, to “C”, to “D”.vi  
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There is also literature demonstrating a relationship between redlining and increased air 

pollution exposure. In 2022, Haley Lane et al. found a pattern of higher concentrations of 

nitrogen dioxide (NO2) and fine particulate matter (PM2.5) in historically redlined neighborhoods 

in a survey of 202 U.S. cities.viii Intraurban disparities for NO2 and PM2.5 were significantly 

larger by HOLC grade than by current race or ethnicity.viii Associations between redlining and 

increased pollutant concentration were strong for NO2, and weak, but present, for PM2.5. viii   

This existing literature establishes relationships between unfavorable HOLC designations 

and increased extreme heat, reduced green space, and higher concentrations of PM2.5 in cities 

across the United States. This thesis will examine to what extent these trends are observable in 

New Haven.  
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Background 

Before examining potential causality between redlining and current exposure to climate-

driven health risks, it is critical to understand redlining’s historical context, how HOLC 

assessments were generated, and observed relationships between redlining and current social 

inequities. Additionally, this section details the mechanisms by which extreme heat, low 

prevalence of green space, and increased air pollution concentrations negatively impact human 

health.  

A history of redlining 

In 1933, New Deal legislation sought to fix the rapid foreclosure rates of the Great 

Depression.ix Across the United States, banks were foreclosing on 13.3 per 1,000 mortgages, 

resulting in economic and social turmoil.ix The Home Owners’ Loan Corporation (HOLC) was 

created to remedy this chaos by reforming the mortgage lending process.x This federal agency 

was charged with aiding banks in streamlining the process of vetting properties and homeowners 

for mortgage lending, with the intention of reducing loan default and foreclosure rates.x As a part 

of this initiative, the HOLC created a grading system to capture the degree of perceived risk of 

lending in a certain neighborhood.x Over the 1930s, HOLC representatives traveled across the 

United States, assessing mortgage lending risk in over 200 cities, including New Haven, CT.xi 
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Figure 1: HOLC map of New Haven, CT (Source: Mapping Inequality project)xi 

To easily visualize these different tiers of risk, the HOLC created maps for banks to use 

in making lending decisions.Error! Bookmark not defined. These maps delineated areas that were d

eemed safer for investment, and therefore more deserving of easy access to credit.ix Conversely, 

they defined areas that carried greater risk, thereby restricting flow of capital to these 

neighborhoods.Error! Bookmark not defined. Grades ranged from “A”, “B”, “C”, and “D”, which r

espectively correlated to “Best,” “Still Desirable,” “Definitely Declining,” and “Hazardous.”Error! 

Bookmark not defined. Neighborhoods receiving an “A” grade were colored in green, “B” in blue, “C” 

in yellow, and “D” in red, leading to the term redlining.Error! Bookmark not defined.  
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The formula used in created these grades was far from objective; this is particularly 

relevant in research that looks at the current environmental impacts of these assessment grades. 

The area description cards filled out by HOLC members include descriptions of the terrain, 

favorable influences, detrimental influences, inhabitants, buildings, history, occupancy, demand, 

trend of desirability over the next 10-15 years, and any clarifying remarks.xi Further investigation 

reveals that the inhabitants section specified the following characteristics: types, foreign-born, 

infiltration, estimated annual family income, Negro, and relief families.Error! Bookmark not defined. T

he formula penalized areas for populations of Black and Hispanic people, as well as other people 

of color.Error! Bookmark not defined. Additionally, the assessment considered immigrants and low-

income people unfavorably.Error! Bookmark not defined. HOLC ratings were overtly discriminatory; 

racial and economic discrimination were clearly codified into the HOLC’s assessment formula. 
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Figure 2: HOLC assessment sheet for Dixwell neighborhood in New Haven, CT (Source: 

Mapping Inequality project)xi 
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Figure 3: HOLC assessment sheet for East Rock neighborhood in New Haven, CT (Source: 

Mapping Inequality project)xi 

These assessment sheets provide qualitative insight into bias implicit in the formulation 

of HOLC grades in New Haven. The area descriptions for the Dixwell and East Rock 

neighborhoods contrast quite intensely. In the above image, the HOLC states that the Dixwell 

neighborhood had a “infiltration” of “Negro” residents.xi The type of inhabitants is described as 

“Domestics,” and detrimental influences include the “character of development and 

inhabitants.”xi The East Rock neighborhood is portrayed quite differently. The type of inhabitant 
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is described as “Exec. & professional”, infiltration is “none”, and there are no foreign-born or 

Black people.xi Perhaps unsurprisingly, the Dixwell neighborhood received a “D” grade, and the 

East Rock neighborhood received an “A” grade.xi  

These maps were built on bias, and they propagated further systemic inequity for 

decades. The Fair Housing Act was passed in 1968 and ended banks’ use of these HOLC maps, 

but their influence persists into the prescence.xii Historically redlined neighborhoods today 

experience reduced access to capital, lower homeownership rates, worse credit scores, higher 

poverty and vacancy rates, increased risk of loan denials, subprime lending, and worse property 

values, and lower economic mobility.xiv,xii,xiii  

It is important to consider how green space was treated in HOLC assessments. In both the 

Dixwell and East Rock assessment sheets, the natural environment was mentioned. In the 

Dixwell street, the terrain was described as “flat land with tree lined streets.”xi East Rock was 

described as “well wooded”, “attractively located”, and having “extensive back yards.” xi The 

environment in 1937 was considered in the HOLC assessments, meaning that one would expect 

to see perhaps more abundant green space in these same areas. However, modern environmental 

discrepancies must be explained by a multitude of socioeconomic and policy factors, and not just 

the state of the land prior to HOLC intervention.  

It is important to understand the exact mechanisms by which redlining codified inequity; 

their initial assessment captured racial and economic prejudice, but the HOLC designations then 

skewed access to economic opportunity based on this initial bias. Banks made decades of lending 

decisions based on the lines on the HOLC maps, severely biasing the flow of financial capital 

into neighborhoods for generations.xiv Neighborhoods with better HOLC grades had greater 

accessibility to lending, while redlined neighborhoods were significantly restricted.xiv This 
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inequitable access to capital perpetuated low homeownership rates in neighborhoods with 

unfavorable HOLC grades.xii Homeownership helps to build generational wealthxv and drives 

civic engagement,xvi meaning that those with favorable HOLC designations, and therefore 

greater access to lending capital, slowly accrued greater influence over local place building. This 

includes decision-making about the location of major development projects, such as highways 

and industrial facilities. xvii  These types of development can exacerbate environmental risk, 

through direct emissions of heat and pollution, or reduction of green space.xiii Such projects are 

susceptible to NIMBY-ism, defined by individuals opposing development projects near their own 

neighborhoods, due to perceived threats to their homes and health.xviii In addition to personal 

risk, perceived risk to property values is also a facet of NIMBY-ism.xviii Relatedly, homeowners 

are likely to support increased green space due to related property value increases.xix Redlining 

created a feedback loop between access to mortgage capital, homeownership, and environmental 

engagement. 

An overview of climate-driven risks to human health  
 

 This section provides an overview of the ways that various climate-driven health risks 

influence human health. This is particularly relevant as climate change continues to worsen.  

Extreme heat 

 

Extreme heat has caused more fatalities in the United States than any other form of 

hazardous weather.xx Climate chance will increase both the frequency and severity of extreme 

heat events.xxi The risk from heat stress depends on heat, humidity, and direct exposure to 

sunlight, measured by a wet bulb global temperature.xxii This metric captures the human body’s 

ability and thresholds to regulate our temperature via physiological processes. xxii High wet bulb 

temperatures conditions cause direct health effects, such as heat exhaustion and heat stroke.xxiii 
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Additionally, extreme heat exacerbates chronic conditions, such as cardiovascular disease, 

respiratory disease, cerebrovascular disease, and diabetic conditions.xxiv High temperatures also 

create a financial burden, driven by an increased use of air conditioners, fans, or other cooling 

technologies.xxv Certain demographics are most vulnerable to the effects of extreme heat. This 

includes demographics such as unhoused persons and those with physical, outdoor jobs.xxvi Many 

New Haven residents lack air conditioning, making extreme heat especially dangerous.xxvii   

The urban heat island effect is particularly relevant to understanding the state of extreme 

heat in cities such as New Haven. Heat islands are urban areas that experience higher 

temperatures than surrounding, non-urban areas.xxviii  

 

Figure 4: Urban heat island effect diagram (Source: D.S. Lemmen and F.J. Warren, Climate 

Change Impacts and Adaptation)xxix 
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On average, urban areas are 1-7ºC warmer than surrounding non-urban areas during the 

daytime.xxx Built structures in cities, such as buildings, roads, and other infrastructure made from 

impervious materials, absorb, retain, and re-emit solar energy more so than naturally occurring 

materials.xxviii These materials also provide less moisture and shade than natural landscape 

features, which contribute to cooling.xxviii The albedo, or the fraction of light that a surface 

reflects, also influences the amount of solar heat that is retained; darker surfaces retain more 

heat, while lighter colors reflect more solar radiation.xxx Additionally, the layout and geometry of 

buildings can trap heat by reducing wind flow.xxviii Cities also have a higher density of heat-

producing anthropogenic sources, such as vehicles, air-conditioning units, and industrial 

facilities.xxviii These factor coalesce and result in hotter living temperatures for urban citizens.  

Urban green space 

 

Green space includes various forms of outdoor environments, including nature reserves 

and urban parks.xxxi However, not all types of plant cover are created equal. Research has shown 

that trees in particular boast a myriad of physical health benefits for humans.xxxii,xxxiii Urban trees 

reduce the harmful health effects of air pollution, including fine particular matter (PM2.5),xxxiv 

coarse particular matter (PM10),xxxv nitrogen dioxide (NO2),xxxvi ozone (O3),xxxvii and sulfur 

dioxide (SO2).xxxi Trees remove these pollutants via the following mechanisms: temperature 

reduction and other microclimatic effects, removal of air pollution through leaf stomata, 

adsorption onto the leaf surface, and emission of volatile organic compounds, which can reduce 

ozone concentrations via atmospheric reaction pathways.xxxviii Shade from trees also can lessen 

the energy needed to regulate buildings, thereby lowering energy consumption and mitigating 

associated emissions.xxxviii Areas with higher densities of urban trees are associated with a lower 

prevalence of asthmaxxxix and lung cancerxl and reduced asthma hospitalization rates when 
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ambient pollutant concentrations are high.xli Shade from trees, particularly those with wide and 

dense canopies, reduce exposure to ultraviolet radiation,xlii which is a major risk factor for most 

skin cancers.  

Urban trees also reduce air and surface temperatures, and thereby reduce the negative 

health effects of extreme heat.xliii This occurs through several mechanisms, including canopy 

shading and transpiration, which influence the balance of surface energy and the water vapor 

cycle of the hydrosphere-atmosphere-biosphere. xliv Through this, trees can adjust the outdoor 

radiant heat and change microclimates.xlv,xlvi Additionally, trees can reduce wind speed, enhance 

airflow turbulence, and reduce convective heat.xlvii The physical properties of trees, such as 

diameter at breast height, crown width, and leaf area all greatly influence the extent to which the 

tree influences its local microclimate.xlviii Because of differences in these aforementioned 

variables, in addition to root depth, tree morphology, and leaf reflectance, the cooling properties 

of a tree also depends greatly on species. xlix  

Research also suggests that higher urban tree cover is correlated with mental health 

benefits.l Increased urban tree cover is linked with lower rates of both property and violent crime 

in New Haven, CT.l Furthermore, there is a wealth of evidence that trees boost cognitive 

functionli and mental health, including lower rates of anxiety, depression, anger, confusion, 

stress, and fatigue.lii Finally, urban trees are correlated with higher measures of active living, 

including commuted-related walking among children,liii recreational walking,liv and total physical 

activity,lv as well as reduced rates of obesity.lvi Trees provide diverse human health benefits, and 

their absence in various communities directly harms those who inhabit those neighborhoods.  

PM2.5 air pollution 
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Air pollution is directly linked to many health issues.lvii Particulate matter less than 2.5 

microns (PM2.5) is one of the key pollutants measured as a part of the National Ambient Air 

Quality Standards and monitored in the Clean Air Act.lviii PM2.5 is produced through both 

primary and secondary mechanisms, including combustion emissions of oil or gasoline, or 

atmospheric reaction pathways resulting from the interactions of SO2, NOx and organic 

compounds.lix Exposure to PM2.5 is harmful to human health as their small size allows them to 

penetrate deep into the lungs and bloodstream.lx This can lead to a variety of health issues 

including impaired lung function, respiratory tract diseases, and raised morbidity and mortality 

of cardiopulmonary disease.lxi The EPA recommends that PM2.5 concentrations remain below an 

annual standard of 12 µg/m3 and a 24-hour standard of 35 µg/m3.lxii 

Primary emission sources of PM2.5 include power plants, industrial facilities, and motor 

vehicles.lxiii These emission sources, including power plants, industrial facilities, and highways, 

are more likely to be in low-income neighborhoods and communities of color than in wealthy, 

white neighborhoods.lxiv  
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Materials 

This research analyzes a variety of materials, including a GEOJSON shapefile and 

primary HOLC area descriptions from the University of Richmond’s “Mapping Inequality” 

Lab,xi Landsat 8 raster images, Tree Keeper data, PM2.5 data, and 2019 American Community 

Survey demographic data.  

“Mapping Inequality” resources  
 

 

Figure 5: Shapefile of HOLC neighborhoods in New Haven (Source: Mapping Inequality 

project)xi 

I downloaded a GEOJSON shapefile of the HOLC map of New Haven from the 

University of Richmond’s Digital Scholarship Lab’s Mapping Inequality project. As downloaded, 

the shapefile is geo-referenced by the HOLC delineations and includes the neighborhood grades 

(A-D). The shapefile can be overlaid over various data layers to calculate statistics based on the 
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spatial boundaries. In addition to the shapefile, I examined Mapping Inequality’s area description 

images, which are written records of the assessment process HOLC representatives used to 

assign each neighborhood a classification. These area descriptions include information on the 

terrain, favorable and detrimental influences, inhabitants, buildings, and history, as well as other 

factors. Examining the area description records provides qualitative context for the bias present 

in the HOLC assessment process. Additionally, these records can be compared with current 

demographic data to understand how these neighborhoods have changed since the HOLC 

assessments of New Haven in 1937.  

Landsat8 images 
 

I used Landsat 8 images to assess land surface temperature (LST) and green space. 

Launched in 2013, the Landsat 8 mission is a collaboration between NASA and the U.S. 

Geological Survey.lxv The satellite payload has two scientific instruments, the Operation Land 

Imager and the Thermal Infrared Sensor.lxv These sensors provide global coverage with a polar 

Sun-synchronous orbitlxv and an altitude of 705 kilometers.lxv The mission completes a revolution 

once every 16 days.lxv The images were extracted from the Universal Traverse Mercator (UTM) 

Zone 18N, which contains New Haven, CT. I selected images (n = 16) between 2015 and 2022 

during the summertime (June-September) in the northern hemisphere, because extreme heat 

exposure risk is highest during these months. Maps were only generated from images that 

satisfied a threshold of less than 10 percent cloud cover, as clouds prevent proper data collection 

from satellites.lxvi The following days were selected based on this criteria: August 3, 2015; June 

18, 2016; July 4, 2016; July 20, 2016; August 5, 2016; September 22, 2016; September 25, 2017; 

July 10, 2018; July 29, 2019; August 3, 2019; September 15, 2015; June 13, 2020; June 16, 

2021; July 13, 2022; September 15, 2022; and September 23, 2022. I used spectral bands 4, 5, 
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and 10, which correlate respectively to red (0.64 – 0.67 m), near infrared (0.85-0.88 m), and 

thermal infrared sensor 1 (10.6 – 11.19 m).lxv Bands 4 and 5 have a spatial resolution of 30 m, 

and band 10 has a spatial resolution of 100 m.lxv For LANSAT 8, Band 10 is Level-2 product, 

meaning that the data is presented as a scaled integer.lxvii Band 10 is represented by an integer 

value that can be converted to Kelvin via a conversion factor of 0.00341802*x + 149.0.lxvii  

 

Figure 6: UTM18 Landsat 8 true color image from July 29, 2019 (Source: Landsat 8 in 

ArcGIS Pro)  

It is important to note that the Band 10 thermal infrared resolution is coarser, which 

complicates analysis for dense urban areas.lxviii Additionally, Band 10 measures LST, which is 

not quite equivalent to air temperature.v Despite this, thermal infrared data is a widely accepted 

method of investigating large-scale patterns regarding heat-related public health outcomes.lxix  
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These Landsat 8 raster images will be used to calculate LST (Band 10) and NDVI (Bands 

4 and 5). NDVI captures all forms of vegetation, including trees, shrubs, and grasses, which 

provides a holistic measure of green space, compared with the TreeKeeper data which just 

includes trees. 

TreeKeeper database 
 

New Haven’s Urban Resources Initiative (URI) maintains an inventory map of every 

street tree in New Haven in the TreeKeeper database.lxx This data is a particularly robust measure 

of environment quality, as trees provide the most significant ecosystem service benefits to 

humans, when compared with other forms of green space.xxxii There are over 29,000 street trees 

associated with the New Haven area.lxx Each tree is catalogued with its latitude coordinate, 

longitude coordinate, species, neighborhood, and diameter at breast height (DBH) in inches.lxx 

The database is updated regularly as trees are planted.  
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Figure 7: TreeKeeper dataset (Source: TreeKeeper points in ArcGIS Pro) 

The database also includes a summary of ecosystem services provided by the urban trees, 

including CO2 uptake, storm water mitigation, and air pollution removal.lxx One limitation of this 

database is that it only contains street trees and does not capture trees on private property. I 

mitigate this by considering other measures of green space in conjunction with this database. 

American Community Survey  
 
 I used the American Community Survey from 2019 to capture current demographic data 

on New Haven. The 2019 survey is based on data collected from 2015 – 2019 and is the most 

recent iteration of the survey.lxxi Responses are collected across the U.S. population via a sample 
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survey delivered as an internet questionnaire, with additional options to respond via mail, phone 

call or a personal visit.lxxii Annually, approximately 3.4 million housing addresses across the 

United States are selected for participate in the American Community Survey.lxxii The dataset is 

segmented by census tracts and includes granularity down to the block-group level.lxxii For each 

census tract, I used the following metrics: total population count, population by race (White / 

Black / Asian / Native American / Pacific Islander / Other / Two or more races), population for 

whom poverty status is determined in the past 12 months, number of households, medium 

household income, number of housing units, occupied units, vacant units, renter occupied units, 

and owner-occupied units. To geospatially reference the survey results, I used a shapefile of the 

New Haven census tract boundaries from the New Haven GIS Gallery. This data helps us 

understand how redlining has shaped current socioeconomic conditions across New Haven, as 

well as how those factors are correlated with higher climate risk exposure. 

Air pollution dataset 
 

Yichen Yang at the Yale School of the Environment collected a dataset of ensemble 

means of PM2.5 concentrations in New Haven averaged across 90 replicate transects. The data set 

contains data on PM2.5 concentration measurements in parts per million (ppm); each data point is 

associated with a latitudinal and longitudinal coordinate. The measurements were obtained 

between October 2022 and August 2023 by biking around the city along a set route with a PM2.5 

sensor. The data includes 84 replicates of the transects during the day and 77 replicates at night. 

Satellites do not directly measure PM2.5, although the aerosol optical depth measurement can be 

used as a proxy.lxxiii I opted to use the sensor data instead of satellite data for greater 

measurement precision and because the dataset was easily accessible.  
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Figure 8: PM2.5 concentration collection route (Source: PM2.5 points in ArcGIS Pro) 
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Methodology 

I used ArcGIS Pro and R Studio to complete my analysis. I began by downloading New 

Haven’s GEOJSON shapefile from the University of Richmond’s Digital Scholarship Lab’s 

“Mapping Inequality” database. The shapefile is already geo-referenced in the WGS84 

coordinate plane in UTM, meaning that it aligns with the ArcGIS Pro map without needing 

adjustment. Additionally, I uploaded the Landsat 8 raster layers, TreeKeeper data points, and the 

air pollution data points into ArcGIS Pro.  

 

Figure 9: HOLC neighborhood shapefile layer in ArcGIS Pro (Source: Image created in ArcGIS 

Pro) 
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First, I corrected the shapefile boundaries to be able to accurately process all datasets. 

Because the shapefile is highly precise, some of the TreeKeeper data points appeared just barely 

outside of the neighborhood boundaries. For example, in many cases, the shapefile boundary 

would trace along the sidewalk, meaning that it would exclude trees planted on the grassy strip 

of curb between the sidewalk and road. To remedy this, I slightly expanded (< 5 m) some 

exterior edges of the shapefile polygons, so that trees that were just outside of the original 

shapefile boundary would be accounted for in analysis.  

Once I had this updated shapefile, I began analyzing the Landsat raster images from northern 

hemisphere summertime (June-September). Because I only downloaded images that met the < 

10% low cloud cover criteria, there was no need to mask out clouds.  

I first calculated statistics for intra-urban LST based on the United States Geological Survey 

calculation protocol, using the Landsat 8 Band 10 raster image.lxxiv I used Zonal Statistics in the 

ArcGIS Pro Spatial Analyst toolbox to calculate the mean and standard deviation of the Landsat 

8-dervied LST for each day (n = 16) for each individual HOLC neighborhood polygon (n = 47).  

I then calculated the Normal Difference Vegetation Index (NDVI) for each day (n =16), 

which is derived from bands 4 (red) and 5 (near infrared). NDVI is calculated by: 

 

Figure 10: NDVI formula (Source: OneSoil)lxxv 
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NDVI is used to quantify vegetation greenness to understand vegetation density and health.vii 

Values range from -1 to 1, with greater, positive values associated with more abundant healthy 

vegetation.vii The formula is derived from the understanding that healthy vegetation is highly 

reflective of near-infrared vegetation, and much less reflective of red spectral frequencies. NDVI 

values are therefore associated with certain land surface cover types. NDVI values of 0.500 

correlate to dense vegetation, 0.140 to intermediate green vegetation, 0.090 to sparse vegetation, 

0.0235 to bare soil, 0.002 to clouds, -0.046 to snow and ice, and -0.257 to water.lxxvi  

 

Figure 11: Reflectivity of spectral frequencies dependent on vegetation health (Source: 

PhysicsOpenLab)lxxvii 

I produced the NDVI layer for each day by using the ArcGIS Pro Band Math feature to 

calculate NDVI via Landsat 8 Band and 4 and 5 in accordance with the aforementioned NDVI 

formula. I ensured that I use the Float() function for each calculation to produce non-integer 
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output values. Then using this NDVI layer, I used Zonal Statistics again to calculate the mean 

and standard deviation of NDVI for each HOLC neighborhood polygon.  

I then used ArcGIS Pro’s Zonal Statistics again in conjunction with the TreeKeeper data 

points to calculate the number of trees per HOLC neighborhood polygon, tagged with species 

and DBH.  

 I repeat this process once more to get the PM2.5 measurements tagged by HOLC 

neighborhood polygon.  

Finally, I calculated current demographic statistics for each HOLC polygon based on the 

2019 American Community Survey. The results from this survey were reported by census tract 

block, which did not always align with the HOLC neighborhood boundaries. To account for this, 

I used area-weighted resampling to adjust the data for analysis. By overlaying a shapefile of New 

Haven’s census tracts over the HOLC neighborhood polygons, I estimated the resampling 

coefficients for each area. I then took a weighted average of the American Community Survey 

results and multiplied them by the census tract to HOLC neighborhood conversation rate to get 

the statistics segmented by HOLC neighborhood.  
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Figure 12: HOLC neighborhood polygons overlaid with New Haven census tracts (Source: 

Image created in ArcGIS Pro) 

Once I had these statistics, I used R to understand the correlation between HOLC 

neighborhood grade, LST, NDVI, tree count, PM2.5 readings, and 2019 New Haven American 

Community Survey results, including race, homeownership rates, poverty rates, and median 

income. In R, I averaged the measurements across temporal replicates so that each HOLC 

neighborhood (n = 47) had one associated mean value for LST and NDVI. This accounted for the 

natural variation associated with day-to-day temperature differences. Using temporal means for 



Birkey 32 

statistical analysis isolated the spatial variation, which is the focus of this research. I used several 

R packages including: ggplot2, tidyr, dplyr, lattice, and corrplot.  

To estimate the significance of mean LST and NDVI differences, I used ANOVA 

comparisons, including Tukey’s Honest Significant Differences Test. This test estimates the 

differences among group sample means for statistical significance. The ANOVA test determines 

the statistical significance of differences between the mean across groups using a studentized 

range distribution. I used ANOVA because I am testing the influence of a categorical independent 

variable (HOLC grade) on a continuous dependent variable (NDVI, or LST, or number of trees, 

or PM2.5 concentration). 
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Results 

 My Landsat data was collected from Landsat8 days that satisfied <10% cloud coverage 

between June 1, 2015, and September 30, 2023. Regression tests conclude that there is an 

insignificant relationship between the day and the data patterns observed.  

 My data reveals multiple significant trends that help answer the original research 

question. First, there is a statistically significant distribution of differences for urban heat, 

suggesting that redlining manifests in urban heat disparities. Mean LST ranges from 31.12ºC for 

“A” grade areas, to 33.93ºC for “B” grade areas, to 35.43ºC for “C” grade areas, to 36.28ºC for 

“D” grade areas. This trend held true across almost all days, with only one day observing LST 

values that did not uniformly increase from “A” to “B”, to “C”, to “D”. The standard deviations 

for each grade were 1.21ºC for “A” grade areas, to 1.75ºC for “B” grade areas, to 1.48ºC for “C” 

grade areas, to 1.30ºC to “D” grade areas. ANOVA tests between the HOLC grade and LST 

means yielded a p-value of 1.1e-8, demonstrating that there is a highly statistically significant 

correlation between HOLC grade and LST. This enforces my original hypothesis that worse 

HOLC designations would result in higher extreme heat exposure. Figure 13 displays the boxplot 

distribution of LST means, where the LST mean value for each HOLC neighborhood (n = 47) 

was averaged temporally. Error bars represent +/- 1 standard deviation of spatial replicates.  
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Figure 13: Mean land surface temperatures by HOLC grade 

Additionally, viewing the distribution of LST values within individual neighborhoods 

yields a close view into the degree of bias based on HOLC grade. For example, in Figure 14, the 

mean LST value for each HOLC neighborhood is displayed for one day’s worth of data (July 29, 

2019). While there is some slight variation with grades “A” and “D”, the maximum value for 

grade “A” is still less than the minimum value for grade “D.” This view demonstrates that LST 

trends are relatively consistent within grades; the bias of HOLC grades is notable, even defined 

on smaller geographic areas.  
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Figure 14: July 29, 20219 land surface temperature by individual HOLC neighborhoods for 

grades “A” and “D” 

 Likewise, there is a statically significant distribution of differences for NDVI, suggesting 

that redlining manifests in ununiform access to green space. Mean NDVI values range from 

0.318 for “A” grade areas, to 0.265 for “B” grade areas, to 0.235 for “C” grade areas, to 0.210 

for “D” grade areas. Higher NDVI values are indicative of more abundant, healthy plant life. 

Like the temperatures, this trend held true for nearly 100% of days, with only one day observing 

NDVI that did not uniformly decrease from “A” to “B”, to “C”, to “D”. Standard deviations were 

0.0223 for “A” grade areas, 0.0340 for “B” grade areas, 0.0320 for “C” grade areas, and 0.0511 

for “D” grade areas. ANOVA tests between the HOLC grade and NDVI means yielded a p-value 

of 5.7e-7, demonstrating that there is a highly statistically significant correlation between grade 

and NDVI. This aligns with my original hypothesis that NDVI would increase as HOLC grade 
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increases. Figure 15 displays the boxplot distribution of NDVI means, where the NDVI mean 

value for each HOLC neighborhood (n = 47) was averaged temporally. Error bars represent +/- 1 

standard deviation of spatial replicates. 

 
 

Figure 15: Mean NDVI by HOLC grade 

 In considering the trends for LST and NDVI, it is important to note the correlation 

between the two. Plotting NDVI means per day per HOLC neighborhood against the mean land 

surface yields a clear gradual negative relationship between the two. The linear model has an 

intercept value of 44.79, and a coefficient of -40.85. The Pearson statistical correlation between 

NDVI means as a predictor of LST means is -0.898, which is a strong negative relationship. This 

is expected given current understandings of vegetation’s influence on temperature via shading 

and transpiration. In the graph below, the points represent the temporal average of NDVI and 

LST for each HOLC neighborhood (n = 47) over the 16 days, where colors denote their 
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respective grade. 

 

Figure 16: Correlation between NDVI and land surface temperature 

 In contrast to LST and NDVI, the relationship between PM2.5 concentrations and HOLC 

grade was not significant. PM2.5 concentrations were only available for 12 of the 47 HOLC 

neighborhoods. Figure 17 displays the PM2.5 concentrations means for each of these 12 

neighborhoods; there is no clear trend based on grade. We see however that “A” and “C” have 

the higher concentrations, while “B” and “D” have relatively lower concentrations. 

Correspondingly, the ANOVA test between PM2.5 concentration and HOLC grade produces an 

unsignificant p-value of 0.73. This is contrary to my hypothesis that higher concentrations would 

be associated with worse HOLC designations. It is important to note that the Lane study 

referenced in the Literature Review section found PM2.5 concentrations differences across HOLC 

grades to be significant but not large.viii Additionally, this study analyzed aggregated pollution 

data across a greater area, while these data points only represented a bike route through 12 of the 

47 HOLC neighborhoods in New Haven.viii Perhaps the relationship between PM2.5 concentration 
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and HOLC grade would appear more pronounced if the PM2.5 concentrations were aggregated 

from across a greater area.  

 

Figure 17: PM2.5 concentrations by HOLC grade 

 In addition to measuring green space by NDVI, the TreeKeeper database provides 

another robust measure of green space distribution, especially since trees are regarded as having 

more health-promoting effects compared with other types of green space.xxxii  NDVI and tree 

density were not entirely correlated. TreeKeeper density was highest in HOLC grade “B”, then 

“C”, then “A”, then “D”. This trend contrasts with NDVI which observed a continuous 

downward trend as HOLC grade decreased. This difference could potentially be explained by the 

exclusion of private trees from TreeKeeper’s database; properties in the “A” neighborhood likely 

have a higher proportion of trees on private land, as opposed to the street.  
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Figure 18: NDVI and tree density by HOLC grade 

In addition to the density of trees per square foot, I examined the difference in means of 

tree size (DBH) between neighborhoods. Larger, more mature trees provide more ecosystem 

services, including air pollution removal and temperature regulation.lxxviii The relationship 

between tree DBH and HOLC neighborhood yielded inconclusive results; there is no clear 

difference in means, suggesting that average street tree size does is not influenced by HOLC 

grade. The log transformation allowed for a better view of the data. Error bars represent +/- 1 

standard deviation of log of DBH.  
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Figure 19: DBH by HOLC grade 

 Besides size, a tree’s species also substantially influences its impact on the ecosystem, 

including temperature, humidity, and air pollution regulation.lxxix Additionally, the species of tree 

also influences its climate change resilience, as certain species are better poised to thrive with 

rising global mean temperatures.lxxx Finally, certain species promote greater biodiversity and 

supports wildlife more than others.lxxix Examining the species composition of each HOLC 

neighborhood provides another measure of green space quality in New Haven neighborhoods.  

Figure 20 captures the most abundant species of trees on public land in each HOLC 

grade. Overall, the most abundant species were Pin Oak (3,158 trees), Norway Maple (2,511 

trees), and London Planetree (2,258 trees). Significantly the London Planetree was concentrated 

heavily in grades “C” and “D” and did not appear in “A” or “B.” Pin Oaks were the most 

abundant species in all HOLC grades, except D, where London Planetrees was the most 

prevalent. URI is the organization that maintains the TreeKeeper database and coordinates many 

street tree planting initiatives; they also produce a tree catalogue detailing the characteristics of 
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each species in New Haven. URI states that Pin Oaks have a long lifespan, are native to 

Connecticut, and support wildlife of all kinds.lxxxi This is due to their tree structure and acorn 

production.lxxxii Additionally, Pin Oaks are most tolerant of urban conditions of the oak species, 

and they transplant well.lxxxiii Pin Oaks are intolerant of shade and grow best in full sunlight.lxxxi 

URI describes London Planetrees as popular in New Haven and fast-growing.lxxxi It is widely 

used as a street tree, as it is highly tolerant of urban microclimate conditions and resistant to air 

pollution, particularly PM2.5.lxxxiv Additionally, it supports biodiversity, transplants well, and is 

tolerant to full or partial sun conditionslxxxv. However, there are several negative impacts of 

London Planetrees, such as production of organic debris from annual foliage regrowthlxxxvi and 

high emissions of Biogenic Volatile Organic Compounds and pollen grains.lxxxvii While London 

Planetrees certainly provide net positive ecosystem service benefits, there seem to be a greater 

proportion of associated negative impacts than Pin Oaks. 
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Figure 20: Species composition by HOLC grade 

Finally, examining current socioeconomic data helps to contextualize these 

environmental disparities. Using the ACS, I analyzed the current state of HOLC neighborhoods, 

including the racial composition of each area, homeownership areas, poverty rates, and median 

household income. Today, areas that were historically redlined have more people of color and 

lower median household incomes.  
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Figure 21: Current race demographics by historic HOLC boundaries 

 Additionally, viewing these demographic statistics in conjunction with the climate-driven 

health risk distribution helps to display the populations most at risk. Viewing LST and NDVI 

plotted against median household income shows that low-income residents are highest risk. This 

correlates with redlining grades, which follow a similar pattern; median household income 

decreases as HOLC grade decreases, and while LST increases, and NDVI decreases. In Figures 

22 and 23, each plot represents the mean income and LST or NDVI value for each of the HOLC 

neighborhood areas (n = 47). The color is associated with the HOLC-assigned grade. 
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Figure 22: Land surface temperature predicted by median household income and HOLC grade 

 
 
 

Figure 23: NDVI predicted by median household income and HOLC grade 
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Conclusion 

 This study sought to understand the extent to which redlining has resulted in differences 

in climate-related health risks. Understanding the extent to which racist and discriminatory 

housing policies impact our current environment is extremely important, especially as climate 

change continues to accelerate and economic inequality in the United States persists.  

The result of this study leads us to accept the initial hypothesis and suggests that the 

racially biased HOLC maps created environmental health disparities that persist into the current 

day. In New Haven, CT, neighborhoods that were assigned worst HOLC designations experience 

more intense urban heat than neighborhoods that received more favorable HOLC ratings. 

Redlined areas experience mean LST values higher by 5.2ºC and NDVI lower by 0.108 than the 

neighborhoods that received “A” designation by the HOLC. These disparities are congruent with 

earlier studies which found elevated mean temperatures and reduced green space in formerly 

redlined areas relative to non-redlined neighboring areas.iv,vi Additionally, LST and NDVI proved 

to be statistically coorelated. Species composition of trees on public land also depends on HOLC 

grade; Pin Oaks are most prevalent in grades “A”, “B”, and “C”, while London Planetrees are 

most abundant in grade “D.” PM2.5 data yielded inconclusive results regarding the influence of 

HOLC grade. Furthermore, these risks are found in communities with lower median annual 

incomes, higher poverty rates, reduced homeownership rates, and communities of color. These 

findings join a growing body of research arguing for understanding how climate change will 

further exacerbate current, and historically based inequities in the United States.  

Why do these disparities exist? It is difficult to distill singular causations that connect 

lines and colors on a map to current environmental disparities, but there are several prominent 

factors. For one, green space is paramount. Given that vegetation, especially trees, provides 
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innumerous ecosystem services, such as temperature regulationxxxiv, and air pollution removal, xliii 

the co-occurrence of low vegetation likely exacerbates disparities in LST and air pollution levels. 

Additionally, green space is often replaced with impervious surfaces.lxxxviii One such material that 

is particularly heat-producing is roadway. Historic federal programs provided incentives for 

highway building. Since the time the HOLC drew up these maps, the I-95 highway was 

constructed in New Haven.lxxxix Major highways bring heat and exhaust emissions, which result 

in greater health risk exposure.lxxxvii  The I-95 highway crosses through Long Wharf and Annex, 

neighborhoods that received poor HOLC ratings. However, beyond specific development 

projects, it is critical to consider the decades of reduced capital access, lower homeownership 

rates, and resulting diminished local influence over the build environment. It is probable that this 

feedback loop was a key driver in driving disparities in climate-driven health risks in New 

Haven. 

 While understanding the links between discriminatory housing policy and current 

climate-related health risks is certainly a step in the right direction, it begs the question: how do 

we correct this? There are several strategies that may be implemented to promote environmental 

equity. One such strategy could involve reducing the abundance of impervious surfaces and 

increasing the albedo in redlined neighborhoods.xc Various green infrastructure techniques, such 

as bioswales,xci may be well poised to expand in New Haven. In a similar vein, increasing the 

tree canopy cover in historically redlined neighborhoods could provide innumerous benefits. 

Increased tree canopy provides shade, reduces air pollution, and provides greater temperature 

regulation from plant respiration.v New Haven is positioned well to execute on this strategy; URI 

currently works to plant street trees in New Haven.xcii Beyond just planting trees, it could be 

beneficial to examine more closely the species that are being prioritized. Different tree types can 
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provide greater cooling benefitsxciii and are more resilient to climate change-related 

disruptions.xciv Additionally, by understanding that LST is higher in historically redlined 

neighborhoods, we expect an increased need for summertime energy use for cooling 

technologies. By understanding that these communities face higher financial burdens due to 

historic environmental racism, New Haven policy may perhaps offer aid in shouldering these 

costs. From a public health perspective, areas of higher LST correlates with increased morbidity 

and mortality from heat-related health effects.xx Prioritizing these neighborhoods for cooling 

centers in times of high heat could help to remedy some of the undue burden.  

 As climate change continues to worsen and economic inequity in the United States 

persists, addressing systemic environmental disparities grows even more imperative. These 

environmental adaptations and policy implementations should be prioritized in New Haven to 

provide a safe and livable environment for all citizens. 
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